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We report on new instabilities of the quasistatic equilibrium of water drops pinned by a hydrophobic inclined
substrate. The contact line of a statically pinned drop exhibits three transitions of partial depinning: depinning
of the advancing and receding parts of the contact line and depinning of the entire contact line leading to the
drop’s translational motion. We find a region of parameters where the classical Macdougall-Ockrent-Frenkel
approach fails to estimate the critical volume of the statically pinned inclined drop.
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I. INTRODUCTION

Dispense a drop on a flat substrate and then tilt it. De-
pending upon the balance between gravitational and capillary
pinning forces, the drop will slide down or stay at rest. Rain-
drops sticking or sliding on a vehicle windshield provide a
familiar example of this drop stability problem, which is of
broad practical importance.

In structural genomics, for example, protein crystals are
grown by dispensing protein-containing drops onto horizon-
tal glass or plastic substrates. Because protein crystals are
extremely fragile, the substrate is then inverted so as to pre-
vent any nucleating crystals from sedimenting onto and ad-
hering to it �1,2�. Crystals in these “hanging drops” instead
sediment to the liquid-air interface, where they can be easily
extracted without damage. Pinning conditions are important
for maintaining the stability and shape of protein solution
drops during inversion and handling �3�. Drop instabilities
and changes in drop shape affect solvent evaporation rates,
protein concentrations, crystal nucleation rates and crystal
growth rates—and thus the ultimate quality of the molecular
structure determined by x-ray crystallography. Drop shape
variations are also a major obstacle to automated optical rec-
ognition of the drop’s contents, important in high-throughput
protein crystallization. More generally, the motion of contact
lines is related to motion of elastic manifolds in the presence
of disorder �4�, including motion of interfaces in porous me-
dia and depinning of flux line lattices �5�, Wigner crystals,
and charge-density waves �6�.

The pinning of an inclined drop that prevents its continu-
ous motion is related to the contact angle hysteresis, whose
magnitude is usually estimated from the maximum differ-
ence between the contact angles �a and �r at the advancing
�downhill� and receding �uphill� edges of the contact line, as
shown in Fig. 1. If this maximum difference ��cos ��r,a

=cos �r−cos �a is nonzero, then drops of volume less than a
critical Vc��� may remain at rest at a given inclination angle
� �7,8�, although this is a necessary but not sufficient condi-
tion for drop stability. The maximum stable drop volume can
be estimated by balancing the gravitational force on the drop

Fg=�gV sin��� with the pinning force Fp��d��cos ��r,a.
A simple formula,

��cos ��r,a = AV sin � , �1�

was obtained by Macdougall and Ockrent as a phenomeno-
logical explanation of their experiments on inclined drops �8�
and independently by Frenkel as a boundary condition of one
exactly formulated problem for drop stability on an inclined
surface �7�. Here A=d−1a−2 is an appropriately scaled mate-
rial constant, a= �� /�g�1/2 is the capillary length, and �, �, g,
and d are the density, surface tension, gravity, and drop
width, respectively.

The Macdougall-Ockrent-Frenkel �MOF� formula Eq. �1�
has been widely used to describe the relation between con-
tact angle hysteresis and the equilibrium and criticality of an
inclined drop �7–14� from small inclinations and volumes at
which the drop deforms but remains static up to the critical
inclination or volume at which it begins to slide continu-
ously. The validity of the MOF and related functional forms
has been verified in a variety of experiments �8–15�, al-
though it has not always correctly predicted the exact vol-
umes of drops pinned at critical conditions. All phenomeno-
logical improvements to date have led to the same general
form of Eq. �1�, with different length factors instead of d.

Despite extensive study, the problem of the stability of a
one-component drop on an inclined surface has yet to be
addressed in its full richness. Here we examine the equilib-
rium and criticality of a water drop pinned on a hydrophobic
flat glass slide. In particular, we examine a wide range of
quasistatic tilting 0°–90° for a moderately hydrophobic sur-
face ��90° contact angle� having a moderate range of con-
tact angle differences �30° –90°. We show that the MOF
criterion, while providing an excellent description for small
volumes and inclinations, is not general. Deviations from Eq.
�1� at large volumes and angles are associated with transient
modes of displacement, whose mechanics have not yet been
described. We have clearly resolved partial and global insta-
bilities of the contact line. Three coexistence curves corre-
sponding to partial depinning of the advancing and receding
parts of the contact line and to depinning and continuous
motion of the entire contact line mark those instabilities un-
ambiguously. The transient displacements of the advancing
and receding parts of the contact line have different scalings.
We find a region of parameter space where the difference
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between the drop’s maximum and minimum contact angles
cannot reliably be used to predict the maximum pinning
strength and the onset of drop sliding.

II. CONTACT LINE STABILITY AND DEPINNING FOR
AN INCLINED DROP

A drop’s contact line, between its initially static pinned
state and its steady sliding motion, may exhibit a continuous
series of intermediate states. This fact has been previously
noted �10,11,13,16�, but its effect on the stability of an in-
clined drop has not been fully appreciated.

After being dispensed on a homogeneous, flat, horizontal
substrate, a drop will have a circular contact line. As the
substrate angle � is slowly stepped upward, a drop of volume
V eventually becomes unstable and slides continuously down
the substrate. At a smaller angle, the drop’s contact line may
become locally unstable, and undergo local displacements
that change the contact line’s shape but that do not produce
continuous motion. Although these critical angles for the on-
set of global and local instability are in general different, for
some experimental conditions they may be only weakly dis-
tinguishable in measurements. In this case, the transient pin-
ning of the contact line does not affect drop criticality and
may be neglected. The drop equilibrium and criticality may
then be described in terms of a simple energetic balance, as
in the MOF formula, between the potential and capillary en-
ergies of the inclined drop.

When the global and local equilibriums are well sepa-
rated, the contact line can be displaced over the substrate
while simultaneously maintaining its stability against con-
tinuous sliding. In this case, because the contact line configu-
ration corresponding to the global equilibrium is unknown,
the simple energetic balance describing the drop stability cri-
terion should be reconsidered.

Several attempts to analytically describe the shape, recon-
figurations, and criticality of the contact line for an inclined
drop have been reported. In 1948, using a variational tech-
nique to analyze the drop shape for small inclinations, Fren-
kel �7� explicitly showed for a two-dimensional �2D� in-
clined drop that equilibrium conditions and translational drop
instability lead to the MOF criteria Eq. �1�. Popova �17�

extended the variational technique to a 3D drop at small
inclination. She analytically calculated the equilibrium drop
shape, contact line shape, and the contact angle as a function
of position along the contact line. Carre and Shanahan �18�
followed a similar approach to calculate the pinning force,
and obtained a criticality equation similar to the MOF crite-
rion Eq. �1�. Dussan �19�, stimulated by earlier experiments
�10,11�, studied criticality of 3D inclined drops with an ini-
tially elliptical rather than circular contact line. Using the
equations of continuous fluid dynamics, she found an equa-
tion for the equilibrium states of the inclined drop at small
hysteresis, which can be used to obtain the drop’s critical
conditions. Popov �20� used a variational analysis to examine
the equilibrium and criticality of a weakly perturbed hemi-
spherical drop at large inclinations. His solution describes
well only the stability of small drops inclined near �=90°.

In all the above studies �7,17–20�, the contact line shape
was either arbitrarily chosen or else determined from the
minimum of some free energy.

Furthermore, in all cases the chosen contact line shape
was assumed to be maintained up to and including the criti-
cal point for the onset of instability and drop sliding. Conse-
quently, these approaches ignored the transitional behavior of
the contact line prior to global criticality.

In addition to these analytic attempts, two numerical stud-
ies �21,22� have explored freely displacing contact lines.
Dimitrakopoulos and Higdon �21� reported transient contact
line behavior similar to that observed here. However, the
implementation of pinning in the numerical algorithm, which
leads to contact profiles resembling those found in experi-
ment, was not derived from fundamental considerations, and
their y-constrained boundary conditions need further clarifi-
cation and justification. Iliev �22� used a two-parameter phe-
nomenological model to describe the pinning. However, the
connection between those parameters and experiment is un-
clear, and drop deformations and criticality curves were not
calculated, making comparison with the present results diffi-
cult.

III. MATERIAL AND EXPERIMENTAL METHODS

Distilled and deionized water purified by a NANOpure II
system �Barnstead, Boston, MA� was dispensed onto sili-
conized flat glass slides with diameter of 22 mm �HR3-231,
Hampton Research, Laguna Niguel, CA�. On a freshly un-
packaged slide, a 40-�l water drop formed a reproducible
contact angle of 90°–92°. To determine drop stability on a
given slide, a drop was manually dispensed onto a horizontal
slide using a 100-�l micropipette �Pipetman Co., France�.
The slide was then slowly rotated in 2°–4° steps on a home-
built rotation stage. The time interval between rotations was
roughly 1 min, long enough to allow transient shape relax-
ations to dissipate. A 640�480-pixel resolution digital cam-
era �Cohu, San Diego, CA� with a telecentric 55-mm objec-
tive �Computar, Japan� was mounted on the rotation stage,
and aimed perpendicular to plane of the slide �corresponding
to the “top view” in Fig. 1�. Image recording at six frames
per second began immediately after each stage rotation was
completed and continued throughout the entire relaxation pe-
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FIG. 1. A drop on an inclined surface, characterized by the drop
volume V and diameter d, the contact line perimeter p, the advanc-
ing and receding contact angles �a and �r, and the substrate incli-
nation angle �. Observations from above can determine the shape
and position of the contact line, while observations from the side
can determine the contact angles.
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riod. A custom image recognition program was written and
implemented in LABVIEW to process each image to extract
the contact line. Figure 2 shows examples of contact line
profiles at different tilt angles determined in this way.

The apparent contact angles at the advancing and receding
contact lines were measured from the drop “side view” in
Fig. 1 using an independent horizontal goniometer. Dis-
pensed drop volumes were accurate to 0.1–0.5 %, and tilt
and contact angle measurements were accurate to 1°–2°.
Measured velocities U of contact line motion during the tran-
sient displacements were �0.1 mm/s. Using water’s dy-
namic viscosity 	�0.01 g/ �cm s� and surface tension
��70 dyn/cm yields an upper bound �10−6 for the capil-
lary number Ca=U	 /�. Thus all dynamic effects during
contact line rearrangement can be neglected.

On a horizontal, homogeneous flat surface, a drop’s mini-
mum free-energy configuration has a circular contact line. In
practice, the actual contact line shape depends on the initial
contact conditions formed while the drop is dispensed. We
found that the subsequent contact line displacements depend
upon the contact line’s initial shape and on the initial contact
angles along it. Consequently, we carefully prepared and se-
lected drops with initially circular contact lines.

IV. RESULTS

Figure 2 shows typical results for the contact line position
recorded at different tilt angles, for two drops with volumes
of 13 and 90 �l, respectively. As the substrate is tilted, the
contact line initially remains pinned in its original circular
configuration. Beyond a first critical tilt angle �a, the ad-
vancing portion of the contact line becomes locally unstable

and displaces in an attempt to find a new equilibrium, even-
tually reaching a new static configuration. Beyond a second,
larger critical angle �r, the receding part of the contact line
becomes locally unstable and displaces, but the drop again
finds a new static configuration. Beyond a third critical angle
of inclination �crit, the drop becomes unstable and slides con-
tinuously.

The difference in the behavior of the advancing and re-
ceding contact lines implies that pinning along the contact
line is not homogeneous. This conclusion is consistent with
previous calculations and measurements �18,23–25� of the
contact angles along a contact line’s circumference.

Figure 3 examines how the displaced length L of the static
contact line evolves with respect to the critical parameters �
and V. The total displaced length L of the contact line at the
advancing and receding edges following a tilt increment to
angle � can be determined by subtracting images acquired at
�=0° from those at that angle �. For small � such that the
contact line remains circular, the resulting difference images
still show some displaced pixels that are randomly distrib-
uted over the contact line, arising from noise and other mea-
surement errors. In Fig. 3�a� and especially Fig. 3�b�, this
noise produces the small-� deviations from L / p0=0. At
larger � �beyond �a or �r�, the advancing or receding part of
the contact line begins to displace �Fig. 3 insets�, and the
difference image shows a chain of connected pixels. This
chain grows on further inclination to form a displacing front
of length L. Figure 3 plots L / p0 vs � /�crit, where p0 is the
unperturbed drop perimeter �at �=0°� and �crit corresponds
to the onset of drop instability and continuous translational
motion.

FIG. 2. Views normal to the substrate plane of the static contact
lines for two drops, achieved as the substrate inclination is in-
creased. The coordinates are in pixels, with the same image magni-
fication for both drops, and the scale bar is 2.6 mm long. The num-
bers on each contact line indicate the substrate inclination � in
degrees.
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FIG. 3. Total displaced length of the contact line L at �a� the
advancing and �b� the receding edges as a function of drop inclina-
tion angle �. The initial drop perimeter at �=0° is p0, and at �crit

the contact line can no longer find a static configuration and begins
to slide continuously. The numbers on each curve denote the drop
volumes in �l.
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Figure 3 visualizes unambiguously the fact noted previ-
ously �10,11,13,16� that the advancing contact line may dis-
place at a lower inclination angle than the receding contact
line. Although there is considerable scatter in the data, there
is still remarkable consistency in behavior over the factor-
of-10 volume range examined. The advancing contact line
begins moving at a small � /�crit�0.2 and the displaced
length L / p0 grows monotonically, reaching a consistent
value of �0.6±0.1 just before �crit. In contrast, the receding
contact line remains pinned until � /�crit
0.6–0.8, and then
steeply increases to L / p0�0.5 at �crit. Note that, because the
drop becomes distended, the total contact line length near
�crit exceeds its initial length p0.

Figure 4 presents a subset of the data in Fig. 2, plotted in
the space of critical parameters V and �. The solid � and
open � squares indicate the onset of local instability at the
advancing and receding parts of the contact line, respec-
tively, and the solid triangles � indicate the onset of continu-
ous drop motion.

The curves � and � bound a zone of metastability of the
pinned contact line, where an appropriate disturbance �e.g.,
tilt or vibration� can lead to depinning and either reconfigu-
ration to a new static configuration or to continuous sliding.
This metastability may explain uncertainties in previous
measurements of critical volumes of inclined drops
�12,14,15,26,27�.

A log-log scaling of these data is presented in Fig. 5, and
clarifies the observed differences in the transient displace-
ments of the contact lines. Between absolute stability �zone
�a��—where the initial circular contact line is maintained at
all inclinations—and continuous motion �zone �e��, the con-
tact line passes through three transitions: instability of the
advancing line at �a�V� �Fig. 4, curve ��, instability of the
receding line at �r�V� �Fig. 4, curve ��, and finally, instabil-
ity at �crit�V� leading to continuous translational motion of
the entire contact line �curve ��. Figure 5 also clearly shows

that there are five zones of behavior in the space �V ,�� in
which the contact line loses its stability. In addition to zones
�a� and �e�, in zone �b� the contact line is stable only up to a
maximum inclination �90°. In zone �c�, between the � and
� transition curves, the contact line shows partial instability
at its advancing edge. In zone �d� both the advancing and
receding portions participate in quasistatic displacements,
but the drop still remains at rest.

Scatter in the data of Figs. 4 and 5 is due to variations in
pinning properties from glass slide to glass slide. The mea-
surement uncertainties in � and sin��� are comparable to the
size of the symbols.

Fits to the data in Fig. 5 indicate that there is not a unique
scaling for the three transitions. No contact line motion is
observed in region �a� at inclinations up to and including 90°.
Consequently, all three fits should intersect sin���=1 at or to
the right of the dotted line �assuming that the sin���−V re-
lation is a simple power law�. The receding contact line tran-
sition and the transition to continuous sliding have the same
volume scaling V−0.75�V−2/3. However, the best fit to the
advancing transition data scales as V−1.06�V−1. If a V−2/3

scaling is assumed, the sin���=1 intercept lies well to the
left in region �a�, even if the data for sin����0.15 is ex-
cluded. This suggests that the advancing instability is con-
trolled by disturbances that do not scale like the drop size.
The length factor d in the MOF formula for the advancing
part of the contact line should thus be replaced by some new
scaling �, which is independent of the drop size and may be
related to the length scale of local perturbations.

Figure 6 shows the measured apparent advancing and re-
ceding contact angles vs inclination angle, for drop volumes
ranging over a factor of 8. The measurements were per-
formed for each particular drop volume at inclinations below
�crit, for which the contact line reached a static configuration
after each inclination increment. Solid guide lines denote the
stable regions ��a� and �b� in Fig. 5�, and dashed lines indi-
cate zones of partial instability at the advancing and receding
edges ��c� and �d� in Fig. 5�. The drop contact line traverses
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FIG. 4. Contact line transitions as a function of substrate incli-
nation angle � and drop volume V. Symbols denote �: onset of
quasistatic displacements of the advancing contact line; �: onset of
quasistatic displacements of the receding part; and �: onset of con-
tinuous motion of the whole contact line.
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FIG. 5. Log-log representation of Fig. 4. The letters denote
zones where �a� the contact line is absolutely stable against any
inclination, �b� the contact line is stable up to a maximum inclina-
tion �90°, �c� the contact line locally displaces to a new static
configuration, �d� the contact line globally displaces to a new static
configuration, �e� the contact line is unstable and moves
continuously.
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the stable zones �a� and �b�, passes the advancing and reced-
ing displacement transitions and the zones of partial instabil-
ity �c� and �d�, and eventually reaches the globally unstable
zone �e�. These data deviate significantly from those pre-
sented in Ref. �28�, where a hydrophobic substrate was also
used. In particular, while the advancing angle in Fig. 6 is
nearly independent of drop volume, the receding angle de-
pends strongly upon drop volume.

Figure 6 raises another interesting question, touched on in
�29�: which values of the advancing and receding contact
angles �a and �r for a given drop volume do we have to
choose for an adequate description of contact line pinning
and stability? According to Figs. 5 and 6, the advancing and
receding angles often lie in different zones of stability in Fig.
5. In particular, the last absolutely stable value of �r �indi-
cated in Fig. 6 by the points at which the solid curves con-
nect to the dashed ones� do not have corresponding abso-
lutely stable values of �a.

The existence of metastable zones �c� and �d� is not an-
ticipated by the simple force balance that leads to Eq. �1�,
and complicates the comparison of Eq. �1� to experiment.
More detailed models that have led to relations of the MOF
form have assumed that the contact line remains in its �
=0° configuration until the drop as a whole depins and
slides. The contact angles �a and �r in Eq. �1� are then those
for the inclination � at the onset of global instability, corre-
sponding to the last points on the dashed curves in Fig. 6,
and to the �-transition curve in Figs. 4 and 5. But since the
contact line in fact exhibits local instabilities before the onset
of global instability, it is not obvious that this traditional
choice of contact angles is correct. In the absence of a clear
alternative, we will use this choice to compare Eq. �1� with
experiment.

Figure 7 compares the MOF equation for the equilibrium
and stability of inclined drops with our experiments. Using
the perimeters p from images similar to those presented in

Fig. 2 and the traditional choice for the contact angles �a and
�r to quantify the contact angle difference, we may rescale
the data of Figs. 4 and 6 using F�=��cos �r−cos �a�p /2�
and Fg=V�g sin � such that the MOF fit of Eq. �1� appears
as a straight line. At small values of the scaled variables, the
data are in fact linear, and a fit gives �=72 dyn/cm, consis-
tent with the accepted value for water at T=22 C of
72.5 dyn/cm.

The portion 1-2 of the solid line corresponds to regions
�a� and �b� in Fig. 5, where the contact line does not displace
from its initial �=0 configuration. In this range of param-
eters, Eq. �1� provides an excellent fit to the data, as has been
observed in many previous studies �8,10–14�.

For larger drop volumes, Eq. �1� continues to provide an
excellent fit, suggesting that the quasistatic contact line dis-
placements do not appreciably affect the overall drop shape
and drop pinning. The line 2-3 corresponds to the region �c�
in Fig. 5 where the advancing part of the contact line is not
stable and exhibits quasistatic displacements.

The points at largest Fg—on the “hooks” of the dashed
curves in Fig. 7—represent the last stable contact line con-
figurations, corresponding to the � line in Fig. 5. The zone
between curves 2-3 and 2-4 corresponds to the �d� region of
Fig. 5. According to Fig. 5, in this zone both the advancing
and receding contact lines are locally unstable and undergo
quasistatic displacements. In this zone there are clear and
large deviations from the MOF fit. The last stable points
form the criticality curve roughly presented by curve 2–4.

V. CONCLUSIONS

The present experiments show that the standard picture of
instability of inclined drops, as assumed in previous analyti-
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FIG. 6. Apparent values of the advancing contact angle �a �open
symbols� and receding contact angle �r �closed symbols� vs incli-
nation �, for five different volumes V. The lines are guides to the
eye, and are comprised of a solid segment where the contact line
remains pinned in its initial �=0° configuration �regions �a� and �b�
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line, and slides continuously beyond it �the � line in Fig. 5�.

FIG. 7. Equilibrium and criticality of an inclined drop. Symbols
indicate the evolution of drops from static pinning to continuous
sliding, for five different volumes. The solid line 1-2 is a fit to the
MOF formula �Eq. �1��, the dashed lines show how the data deviate
from this fit, and the solid curve 2-4 indicates instability of the
contact line �the � line in Fig. 5�. The letters and insets represent
the same regions plotted in Fig. 5 and different kinds of displace-
ment of the contact line, respectively. For definitions of F� and Fg

see the text.

EFFECT OF TRANSIENT PINNING ON STABILITY OF… PHYSICAL REVIEW E 75, 066308 �2007�

066308-5



cal treatments, is oversimplified. In particular, the assump-
tion that the contact line remains unchanged with inclination
until it begins to slide does not adequately describe the actual
depinning. By quantifying the metastable displacements that
precede global depinning, the present results provide a basis
for a more complete treatment of inclined drop stability.
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